
UNCLASSIFIED

AD 274002

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTO 12, VIRGINIA

UNCLASSIFIED



NOTICE: When overment or other drawings, speci.-
fications or other data are used for any purpose
other than in connection with a definitely related
government procuMent operation, the U. B.
Government thereby incurs no responsibility, nor any
obligation vhatsoever;' and the fact that the Govern-
sent ny have formulated, furnished., or in axT -my
supplied the said drawings, specifications, or other
data is not to be regarded by imlication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to amnufacture, use or selI any
patented invention that my in any vay be related
thereto.



PASCUAL JORDAN

FINAL REPORT 1, 1961

Iowa

THE MATHEMATICAL THEORY

Of QUASI ORDER,

SEMI GROUPS OF IDEMPOTENTS

AND NONCOMMUTATIVE LATTICES

- NEW, FIELD OF MODERN ALGEBRA

~ ~I~IL~iaF

V AR"



PASCUAL JORDAN

FINAL REPORT I, 1961.

THE MATHEMATICAL THEORY OF QUASI ORDER.

SIMI GROUPS OF IDMPOTENTS AND NONCOMMUTATIVE LATTICES

- A NEW FIELD OF MODERN ALGEBRA.

The research reported in this document has been supported in part by the

AERONAUTICAL RESEARCH LABORATORY

of the OFFICE OF AEROSPACE RESEARCH, UNITED STATES AIR FORCE

through its European Office



About this Report.

The theory of skew lattices - a new chapter (or a new

paragraph) of abstract algebra - is discussed here in such a

manner, that 1) the greater part of known important results

concerning this field is covered here; 2) no knowledge of the

reader concerning already published parts of the theory is

needed in order to understand what is said here.

Many of the details discussed here are already published in

articles of the author, partly together with E. Witt and W.Boge.

But only in this report the systematical trend of the new

mathematical tkeory is clearly to be seen - so that the details

find their appropriate frame. At the same time many proofs could

be simplified considerably after the connections of the whole

matter have been stepwise better understood - many details of

the results, originally found by highly complicated considerations,

at last could be proved in a very short and simple manner.

This process of concentration in the development of the theory

allowed also a strong reduction of the length of this presentation

of the theory. Additionally this length has been limited by

omitting much material which to discuss here would have lead

to far. In my mentioned papers as well as in unpublished

manuscripts many further details are contained which till now

did not allow to discern their systematical significance -

ii these many still isolated statements may be reserved for further

study. But also to evaluate and use the beautiful ideas, concerning

our topic, developed by S. Matsushita, is a task not yet

accomplished.

Naturally a considerable part of the theorems presented in this
report here are new ones, not yet published anywhsee. Several
meaningful contributions to the theory made by W. Boge, to whom I
am very much indebted indeed, could be included here.

Especially lemma16 and lemma 17,given by BIMe, show how and why
the new theory of skew lattices must be acknowledged as a necessary
and unavoidable part of mathematical research.
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CHAPTER I. THE CONCEPT OF SKEW LATTICES

§ 1. The mathematical theory of skew lattices - a new branch of

abstract algebra - is a generalisation of the well known theory of

lattices. Taking instead of the two commutative operations of the

lattice theory two operations which must not be commutative, this new

theory deviates from the usual lattice theory in a similar manner as the

general theory of groups deviates from the theory of abelian groups:

The theory of skew lattices is more complicated and more difficult, but

also much rich and more interesting than the theory of lattices.

Groups as well as lattices occur in almost every chapter of mathe=

matics, and their theory therefore is an indispensable tool of nearly

all branches of mathematics. Skew lattices are not so common - examples

of these ust be detected or constructed instead of being seen at once

in many mathematical problems. But great varieties of skew lattices

do actually exist, and especially many of these arise from the study

of lattices. Therefore the theory of skew lattices is not only a

generalisation of the theory of lattices but to a certain extent also

a part of this theory.

Close connections exist between the theory of skew lattices and

the theory of semi groups. Especially the mathematical theory of those

semigroups which contain only idempotent elements, is an essential

part of the theory of skew lattices. But also other types of semi groups

occur in the frame of the theory of skew lattices.

Definition: A set of elements a, b, ... is a skew lattice, iff from each ordered pair of elements a, b two compositions of new

elements a b and bva can be made by operations A v fulfilling

the following axioms: r (aAb)Ac u
(1)(A)

L (a b) c a (bc);

(2).(B) (ab),a = a,(bva) = a



Therefore those skew lattices which are commutative with respect to

each one of the two operations AJ v are the common lattices.

Instead of the signs AV we use often the signs .,+ of multi=

plication and addition.

An a consequence of (2) - even without using the associativity

(1) - we get

(3) a ••a V a = a •

All elements of any skew lattice are multiplicative and additive

idempotonts*

Therefore a skew lattice W is a semi group of idempotents with

respect to addition and to multiplication. We shall see later that

every enomigroup of idempotents does occur as the multiplicative or

additional semigroup of certain skew lattices.

Principle of duality: The axioms (1),(2) remain invariant if one 1)

permutes the operations j ; 2) reads every line from behind.

Definition: The skew lattice W is a skew lattice with orthogona-

lW9 if there exists to each element a an element a so that the

following axioms are fulfilled:

(4) as - a ,

We have then from (2):

(5) a-

Lema 1: If in a (multiplicative) semi group N of idempotento an

involutory relation a.- a fulfilling (5) exists, then the elements

of I form a skew lattice, if the second operation (addition) is

defined by the second line of (4).

The possibility of a non commutative goneralisation of the theory

of skew lattices has been emphasized at first by F. Kloin-Barmon. who

studied in this connection the free semi group of idempotents with

two generating elements. A Spatematical study of skew lattices has

been started by the author of this report, partly in collaboration
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with E. Witt and WeBos who mad* important contributions to this
enterprise. IndependentlIy of this author S. Matsushita studied the
non commutative generalisation of lattice&. The followng is a
complete list of the present literature of this topic:

P. Jordan:

1) hjer nichtkommutative VerbAnde
Arch* Math. 1956 (1949)

2) Zur Quanten-Logik. Arch. Math. 2, 166 (1949/50)
3) Zum Dedekindeohen Axiom in der Theorie der VerbAnde

Math. Soe Hamburg 16, 71 (1949)
4) Algebraisehe Betrachtungen zur Theorie dos Wirkungoquantums und

der Blementarlluge. Math. Sea. Hamburg 18, 99, (1952)
5) Zur Theorie der nichtkonnutativen Verbande

Akad. Main 1952, s. 61
6) Bericht Uber die nichtkommutativen Verbande.

Fesachrift fUr B. Kraft. 1954. 5. 551.
7) Boitrige zur Theorie der SchrigverbAnds

Akad. Mainz 1956, S. 29
8) tlber distributive SchrAgverbande

Akad. Mainz 1958, S. 229
9) Quantenlogik und das kommutative Gesetz

Sympos. Axiom. Method (1960), 365
10) tUber nichtkoneutatiye Verbande

Celebra ions di Archimede del XX. Aecolo (in print).
11) hber distributiv-modulare Schrigverbande

Akad.Mainz (in print).
12) P. Jordan u. B. Witt, Zur Theorie der Schragverbinde.

Akad. Mainz 1953, S. 225.
13) P. Jordan u. We Bdo, Zur Theorie der Schraigverbiinde II.

Akad. Main: 1954, S. 79
14) F. Klein-Barmen, Uber emns weitere Verallgemeinerung dos Verbands.

begriffes. Math. ZS. 46, 472 (1940)
15) F. Klein-Barmen, Ordoid, Halbyerband und ordoide Semigruppe

Math. Annalen 13, 142 (1958)
16) S. Matsushita, Lattices non commutatife.

C.R. 1953, S. 1526 (1953)
17) S. Matsushita, Ideal in-non-commutative lattices.

Proc. Japan Acad. 4, 407, (1958)
18) S. Matsushita, Zur Theorie der nichtkouatativen Verbande I*

Math. Annalen 91~ (1959) r
19) I.A. Green andqZ7 Ross, On semi groups in which Z ux0

Proc. Camb. Phil. Soo. 48, 35 (1952).



CHAPTER II. SEMI GROUPS OF IDEMPOTENTS

§ 2. Definition: A semigroup of idempotents may be.called a

half skew lattice HSL.

In the following we write the half skew lattices as multiplicative

semi half groups, denoting the product of x and y by xoy or

by xy e But the reader may please take in mind: If later we apply

the results of our discussion in this chapter to skew lattioes,

we shall interpret xy

as x y in the case of the A-HSL in any W,

as yx in the case of the v-HSL in any Wo

Special classes of HSL are defined by additional axioms. We mention

V. the following examples of such axioms defining several important

classes:

Commutativity

(6) ab w ba

"Halfnest":

(7) ab a a

"Antihalfnest":

(7,1) ab = b .

"Sulperflat HSL" :
, (8) abc acb ;

"Flat HSL":

(9) aba ab

Without special names:

(10) aba a

(11) abc sc

(12) abac a abc

(13) cabs = cba

(14) abed n acbd

(15) abaca a abca

Obviously (8) is a weaker consequence as well of (6) as of (7);
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and (9) a weaker consequence of (8). The axioms (10) and (11) are

equivalent; for as consequence of (10) we get:

(16) abc w ab(ac)bc n abaocbc n ac.

The axioms (12), (13) and (i5) too are consequences of (14).

The axiom (7,1) has a totally different meaning from (7) in the frame

of the theory of skew lattices - owing to what has been said above

about the interpretation of xy as xAy or yvx - though in

the frame of a theory of semi groups of idempotents (7) and (7,1) are

entirely symmetrical.

Fulfilment of the equation

(17) absa

by two special elements ab may be called an inclusion . In the case

a b a a we say that the element a. is included in b ; in the

case bv a a a we say that b is included in a. In both cases

this inclusion is transitive in consequence of (1), and reflexive in

consequence of (2).

The same remarks are to be made about another inclusion, defined by

(18) ba a a

We call the case (17) weak inclusion, and (18) strong inclusion

Lema 3: In any Wew lattice the halfnests are the equivalence classes

of weak inclusion; the antihalfnests are the equivalence classes of

strong inclusion.

Lemma 4: In any HSL the following three properties are equivalent:

A) There exists no antihalfnest with more than one element;

B) weak inclusion is a consequence of strong inclusion;

C) axiom (9) holds.

Ii



Proof: From C) we have B), that in ab .a as consequence of

ba. a a. From B) we have A),9 that is a -b as consequence of
ba a a and ab *b. From B) we have also C): b a = a -;o ab ua

gives xyx n xy in the case a a xy~b .x . From A) we get C)

ab wb t ba a 4 s+u=b gives xyx xy in the came sixy,

blxyx.

Lemma 5: In any flat HSL the halfflests are a system of congruence

classes,

Prof:If &.a' is a halfnest, then in the flat case also the

pairs of elements ab,a'b and calcal are hslfnests. For we have

aba'b a aa'balb w aafb = ab and cacal a caa'ca' = cam' w ca.

Lemma 6: The commutative HSL are those in which weak and stroag
inclusions coincide.

Proof: From lemma 4 and its proof we see: If weak inclusion is a

consequence of strong inclusion, then we have aba .ab. If strong

inclusion-is a consequence of weak inclusion, we have abs.a *bin.

From two HSL's and H1  with elements ab

and allbloof we can derive a new HSL called by definition the

chain composition (H0 9 HR of RH0 and H 1 Its elements are those

of H together with those of H 1 so that H 0 and H I are

Subsystems of (H ); the composition of any element ac of H N
with any element of H1  being given by

(19) amoa1 *a 1 a0 n as

Definition: An sziom characterising a certain class of HSL's

is called conservative if its validity for H0  and H1  causes

also its validity for the chain composition (H 0 9H1 )
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Leama 7: The axioms (6), (9), (15) are conservative ones.

§ 3. We now proeeed to determine for some of the classes of HSL

defined by the additional axioms above the free system with n generating

elements a1, a., e. , a n.

1) In the case of a halfnest (or antihalfnest) the generating elements

ak are the only ones.

2) In the case of axiomS (11) each element of the free system may be

written as

(20) a l ka

with

(21) kl %j w a"

If we now take n2 elements akl and define their composition

by (21), then we see, that this definition fulfils associativity,

idempotenay akl akl a akl j and the additional axiom (11). Therefore

these are n different elements of the free system.

3) In the case of axiom (8) - superflat RSL - each element can be

written as

(22) a. , a k, .. %
with m different index values k0, kl, .oka n  .

Lot us use the symbol

(23) a . (k , K),

where K is the set of values k 0 , klit" ks.

Composition ist obviously given by

(24) aat = (k, KWKI).

Taking now (24) as definition of the composition of symbols (23), we

see that this composition gives a HSL and fulfils the additional

axiom (8). Therefore the
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(25 u (a) 0 n2 - 1

different symbols (23) are indeed U(n) different elements of

the free system.

4) In the case of flat HSL's, axiom (9), the general element

again can be written as (22); we now use the notation

(26) a m (kok1 . k ;

the composition in defined by

(27) a&' w (kok1,,. kalko ikk oo ka °)

with the additional remark that all those k; are to be ogitted

afterwards which equal any of the numbers k s.

Taking again this as definition of the composition of symbols (26),

we get a HSL, fulfilling (9), and therefore the

(28) G(n) a n1 -o F

different symbols (26) are different elements of the free system.

5) In the case of axiom (15) let us consider the elements

(29) a = ak "k4  o %. a. %1 "'" %.a'

whke all kokl,... , ka are different, and the h0 h1 ,., ha

are any permutation of the kr . We denote (29) by the symbol

(50) a - (kok1 .., kaI hohloo* h);

we have then especially

(31) ak - (kik).

From (15) we get the following composition rule: We have to write
down

(3;2) a&$ a (ko°go kako so* k"oJ ho.ohh; ... hm,

and afterwards to omit the common index values of a and a' among

the ki. and also among the h •

To prove this rule we write, using (15);

d
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aa' n as'aa'

a 000 a.. h see a

so that (32) ii Justified; and the rest in the formulation of our

rule comes too from (15).

Again taking now the symbols (31) as elements, and our rule as defini=

tion of their composition, we get a HSL , fulfilling (15). Therefore

the
(3)P(n) a-n a (n-a)t

emo mle

different symbols (31) correspond with the different elements of the

free system. We have P(2) a 6; P(3) - 51.

§ 4. Definition. A half skew lattice in called an ordered one if it
In fulfils the axiom

(35) ab a a b ,

so that each pair a~b of its elements is a sub system.

Therefore each pair ab of elements ia an ordered HSL

aust correspond to one of the following four possibilities:

1) ab form a halfnest;

(36) 2) ab form an antihalfnest;

3) a is twofold included in b;

4) b is twofold insluded in a.

There are these four possibilities only, because we have for ab
and for ba two possibilities a and b.

mLea, 8. The ordered HSL's are the chains of halfnests and
antihalfnests.

Proof: Any element x in an ordered HSL cannot belong
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to a halfnest as well as to an antihalfneset>fmore than one element.

If x,y form a halfnest, and x, an antihalfnest:

t Xy U ZX a Xt

(37) y 0 y,

xz a zo

this together with

(38) zy M yz y

would lead to xy M y . x ; and (37) together with

zy a yz = z

(39)
would lead to yx a x a y

We denote now any finite ordered HSL by a symbol as

H aA(nl, n2, .... nr)

( )=(HO) A (2)9 .. ,H

meaning a chain compositioncontaining a halfnest of n1  elements

* (all its elements are weakly and strongly included in all other elements

of H), an antihalfnest of n2  elements, and so on.

For example

(41) H = A(3,0)

is a flat HSL with 4 elements, which may be denoted here an 0, U,

v, 1, with the following compositions:

OAX * 0,i+ i*

1,x X .o

With x we are denoting here the general element of H4 .

This example may be used to show how lemma I works. We define
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in H4  an involutional correspondence x-+ x by:

1 1, T o,
(43)

The condition (5) obviously is fulfilled; for in each case at least

one of the elements a,a belongs to the elements z with the

property ZAX Z a. Therefore we get a skew lattice W4  (with

orthogonality):

0 O x a 0 lV,1 a 1

TAX a XO Iv•l

1A x

C H A P T E R III. B A S I C L A W S O F

SKEW LATT I C ES

§ 5. Let W be a set of elements who form in two ways a semi

group of idempotents; one of these compositions being denoted by A

the other one by •

Under what conditions will this system be a skew lattice, fulfilling (2)?

At first we see from (2) that in every skew lattice strong

multiplicative (additive) inclusion of the element a in b has as.

its consequence weak additive (multiplicative) inclusion of a in b

This may be expressed by the graphical scheme:

(45) wek inclusion a,,b - b ab a a

(46)
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Only one of these two statements needs a proof: From

(47) (ba a) b a b

we see, that bAa a a has the consequence

a b a b. The other statement is dual to this one.

But (46) gives not only a necoesary, but also a sufficient condition

for W being a skew lattice. For the element ba is multiplicatively

strongly included in b ; therefore according to (46) it must also be

additively weakly included in b, as expressed by (47).

Lema 9: Any set W of elements forming a multiplicative (operation A )

and at the same time an additive (operation y ) semi group of idempotents

is a skew lattice if and only if each case of strong inclusion is connected

with weak inclusion of the other kind (multiplicative or additive).

Several special cases may be considered:

Lemma 10: If W is a multiplicative (additive) half nest and any

arbitrary additive (multiplicative) HSL, then W is a skew lattice.

Lema 11: If any skew lattice is a multiplicative (additive) antihalfnest,

then it is amdditive (multiplicatium) halfnest.

Definition: A skew lattice being a multiplicative and additive

halfnest is called a nest.
bak

Lemma 12: The nests are the equivalence classes of Iktiplicative and

additive weak inclusion.

1; Lema 13: Each equivalence class of multiplicative and additive strong

P' inclusion contains only one element.

This is a consequence of lemma 11.-

The nests are those skew lattices which fulfil the axiom

(48) ab m b,•.

With (48) we get from (48) that a~b - a.
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The other axiom

(49) a b avb

is valid only in skew lattices with elements au and

(50) a EIa. a,,,

For (49) and (2) lead to (10) and therefore to (11) and to (20),

(21), a special case of (50). The general case of finite skew lattices

fulfilling (49) can be derived from the free systems (20), (21) by
congruence relations; and congruence classes in a skew lattice of type

(50) give skew lattices of this same type.

Proof: Let be a - aj,, where 1* j Then we have from (50):

al, am., aj L A a U,
(51)

Sa l ,,,L a j A &

Therefore in the system of congruence classes all a can be replaced

by the corresponding aj.

Obviously the skew lattice (50) in the direct product of a

multiplicative antihalfnest ( and therefore additive halfnest )
and an additive antihalfnest ol1:

(52)<

Lemma 14: The axiom ab a ayb is fulfilled only by all direct
products of antihalfnests.

Definition: The chain composition (W0 , W1 ) of two skew lattices

Weo W,, with elements a0, b0 .. , and a,, b1,.., is that skew lattice
which as a multiplicative and additive HSL is chain composition

of the corresponding HSL's in W and Wl:

aCA al Ia A a,a0'. ~~(53)• °m 1m

ova a al,a .0  al.

;j
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That this indeed is again a skew lattice can be seen too from lemma 9.

Lema 15: Those elements of a skew lattice which are additively weakly

included in a certain element 0, form a sub system. - The same

statement holds for those elements which multiplicatively include

weakly a.

Proof: From c^a w c; cAb a c we get not only cAa..b w c,

but also o'(avb) a c.b,(avb) * cb a c.

Definition: Any set M is called a quasi ordered set, if for

some pairs of ( unequal or equal ) elements of M a relation S

in defined in a reflexive and transitive manner. ( Special case: a -

for each element, but no other relation exists. Other special case:

aeb for each pair a, b in M)

Lemma 16 (W. Bago): If M is a quasi ordered set, and the elements

of M are in two ways eomigroups - with operations p.)V - having

**d the following properties:

1) aAb.;a,

2) ab a a in all cases a~b;

3) &,b~b,

4) ab a b in all cases a~b,

then M is a flat skew lattice. - Every flat skew lattice can be

described in this manner.
Proof: I. From 3) we have b, aa, therefore from 2): a4 (bva) a a,

and from 4): avba a bva. Dually symmetric to thitmctatements are

(aAb)va a a and ab/a s aAb. - II. In any flat skew lattice

we define acb so that it means twofobd (multiplicative and additive)

inclusion of a in b:

( 5 4 ) x _ x Y x

x~y My.
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This indeed is fulfilled by x w ab,y w a; therefore this relation

(54) indeed has all properties 1),2),93),4).

(The two special cases mentioned above both lead to a nest).

The connexion with lemma 9 and lemma 4 is this one: a.b is

additively strongly included in a, and therefore has to be

( in the flat case ) twofold weakly included in a.

From this lemma Boge derived the following example of a flat skew

lattice: Let M a ab, } be the set of all reflexive transitive

relations C in a set S tx,y,.... Any element a of M

means that in a a. certain manner for every pair xy of elements

of S the relation ny is given or not given. In the former of

these two cases we write xay; in the latter case we write xay.

Now we define in M the relation C by:

(55) aeb means xay =# xby for every pair xy in S.

This is a reflexive and transitive relation.

Secondly we define aAb by:

(6) x(a4b)y4+ xay AND OR
yax AND xby.

Using the Boolean distributive lattice of AND and OR,

denoting AND,OR by .,+, we can write (56) also thus:

(57) x(ab)y a xay.(ya-x + yax.xby)

This is associative.

Proof: We have

(58) 4 x(aA(bAc))y .xay. (Tax + yax.x(bo)y)

= xay.(ji- + yax. xby. (y- + ybx. xcy)).

At the other hand we get:
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x((a A b)Ac)y - x(aAb)y. (y~aAb x + y(a.Ab)x. xcy)

x ay. (yu-x + yax. xby). (y(a~b)x + y(a.b)x. zoy);

ya-b~xu ayax. (May xay.ybx) ;

-xay. (yax + yax.xby.(xay.ybx + y(a,,b)x.xcy))

x ay. (yax + yax. xby. (jb- + (!-ay + ybz).xcy))

a aA(b A 0.

And A has the properties 1),2). For x (aA ) y =io ay according

to (56); and aAb a a as soon as xay 4 by.

Leoma 47 (W. Bbge): The reflexive transitive relations ab,.oo in

a set of elements X0900. form a flat skew lattice if their compositions

AV are defined by (56), (57) for A, and dually for V

This lemas 17 is especially interesting because it shows that at

least the theory of flat skew lattices is an unavoidable part of the

theory of quasi order,

As the last point in this paragraph we consider the ordered skew

lattices, which, by definition, are those which have two ordered HSL's,

so that each pair of elements a,b forms a sub skew lattice.

(Ai~y HSL of two elements is commutative or a half nest or a antihalfnest.

A skew lattice of two elements therefore is a lattice V2 or a nest

N 2  or a halfcoomutative halfnest (look at (65), W6, or an

antihalf nest).

I. We discuss here only finite ordered skew lattioes. Owing to the

fact that each set of elements of an ordered skew lattice is a sub

skew lattice) we can make from the elements a series so that the
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following statements are correct, using the denotation from (W:

1) In the flat case the symbol

(59) W A ̂(nlln2,... , nr)l,(Kl, m2,..o, me)

with

(60) 2 n a2mk w number of elements PeFsot Iy

that mn (al, ml) elements form a nest of elements strongly

included in all other elements, anj twofold strongly included in
n - max(n1 , a1) other elements. Omitting these min(n1, a1)

elements there remains a skew lattice W' of n - mn (n1 , m1 )

elements, namely in the case n1 7mI:

(61) W' u A(n -a,, n2 , ... , (,

in the case n1 m1 •

(62) W' a ^(n 2 ,..., nr)1 (n 1 -n 1 , .t o a);

in the case n am1 •

(63) W' a (n2 ,... , n r)l (m2 ,..., n).

Lemms 18: The symbol (59) with (60) represents in every case a possible
structure of flat ordered skew lattices; and each such structure corresponds
to a uniquely determined symbol (59).

Proof usinR lemma 9: In order to be multiplicatively strongly included

in an element y belonging to the multiplicative halfnest (with nj

elements) denoted by nj , and to an additive halfnest denoted by mh'
the element x must belong to any A-halfnest denoted by n1  with
1 <J; then it belongs to a v- halfnest denoted by mi  with

i (h.

The general case, allowing also the presence of antihalfnests, can

be described by symbols similar to (59), but with asteriosrat some of
the numbers nj mh • Allowing also (superfluous) values 0 of these

numbers, we can write for the general case:
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(64) w a(AlI n , n}, n4l... n r)(m, 'm ,.f.,m

Lemma 19: The symbol (64) gives an ordered skew lattice if and only

if the elements denoted by any n. are entirely contained in those

denoted by a certain mh, and vice versa.

§ 6. Definition: An axiom, characterising a class of skew lattices,

is called an HN-axiom, if it is fulfilled in the case of every half

nest( multiplicative or additive).

The axiom (2) is an HN-axiom according to lemma IC. An example

of an axiom which is not an HN-axiom, is the following one, which

is fulfilled especially if at least one of the operations A. v is

commutative:

(65) (4b).v(b'4a) a (bAa)v(aAb),

(65)
C (afb)A(bva) a (b~a)(ab).

Definition: An axiom for skew lattices is called conservative,

if its validity for W and W1  guarantees also its validity

for the chain composition (W0 , W1 ).

The axiom (2) is conservative; the axioms (48) and (49) are not

conservative ones.

Definition: A skew lattice is flat if both its HSL's are flat

according to axiom (9):
1 ab~a - ab;

(66) 
b A

L avbva a %vb.

Our former statement that (47) is equivalent with the law that

strong multiplicative inclusion has weak additive inclusion as its

consequence, can be applied with: Permutation of xy in xOy;

permutation of xy in xvy; permutation of A *V. Out of the
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oh statements arising in this manner, only two have been discussed

in § 5. Now we mention also the following three additional dually

symmetric axioms (F), .(C), (H), containing each one two equations

which can be interpreted according to those eight statements:

(6?) (F) av(aAb) a (ba)ita w a ;

thus: this axiom can be indicated the meaning of

(68) (C) aA(awb) a (ba)va w a;

this axiom means

(C)

(69) (H) aV(b~a) a (avb)4a z a;

this means

According to lemma 4 the axiom of a flat skew lattice means

From this it is to be seen that (G) for both operations A, V is

a consequence as well of (F) as of (C); for in all skew lattices

(46) is valid.

Lemma 20: A skew lattice fulfilling one of the axioms (C), (F) is

a flat one.

Combination of (H) with (2) gives

we see, that in the flat case (H) guarantees commutativity.

The axiom (C) is fulfilled already if
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(70) aA(aVb) . (ba)Va

is valid - : we then have the consequence (b a),a. a, [(bAa),,a]u a.

But the axiom

(71) aV(bAa) = (ab)4 a

is weaker than (69). This axiom (69) obviously in fulfilled in the

case (49) and in the commutative case. Other examples are not yet

known.

All axioms written down above in this paragraph, (65) till (71),

are conservative ones; but among them only (71) is an HN-axiom.

A further example of a conservative RN-axiom is this:

J aVab) a aA(awb),

(bya) a a (bAa), a,

valid especially in the case that (C) and (F) both are fulfilled,

From lesma 5 we get now

Lemma 21: In a skew lattice fulfilling the axiom (C) the nests are

congruence classes for both operations _ v; these congruence classes

form a lattice.

Proof: In lemma 5 the HSL of the halfnests as congruence classes

is commutative because ab and ba in the flat case (look at

lemma 4) belong to the same halfnest.

§ 7. In this paragraph, evalueting something more about the

ordered skew lattices, we often use the signs .,+ instead of AIv

Definition: As the tolerant distributive law we denote the following

axiom, consisting of two dually symmetric equations:

() SA(bc) a ,(b,[aA),

(cb),a - ([a3,b),,a.



-22-

This notation is reasonable because in the commutative case each

line of (73) gives the usual distributive law.

For from

(74) a,(bc) = a,(b [ac,)

we get (putting a,b instead of b) the usual modular law:

(75) a (Qa,b],c) . abLja.c.j,

and again using (74), we get the distributive law.

The axiom (73) is a conservative HN-axiom.

Definition: The following axiom is called the modular law:

(76)(M) a.b)Vc1(ab) a (a~b),[LcA(ab)1

Lemma 22: This modular law can be formulated also in the following

manner: If two elements xty fulfill the relations

(77) xAY: X,

x Vy •y

(meaning that x is twofold weakly included in y ), then for

every element c it is:

(78) (x ,c)^y - x,,(cy).

Proof: Inserting for xy in (78) the expressions (77), we trans=

form (78) into the relation (76), so that the property of modular skew

lattices, formulated in (77),(78), indeed is a consequence of (76).

And the elements aAb w x, avb = y fulfil (77), so that (76)

is a consequence of the law formulated in (77), (78).

The modular axiom (76) is a dually symmetrical conservative

HN-axiom. The axiom (71) is a special case of (76).

Lemma 23: Any ordered skew lattice fulfils the tolerant distributive

axiom (73) and the modular axiom (76).
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Proof: The relation a(b+c a(b+ac) is fulfilled in the case

ac = a. In the other case ac . a we hae

(79) a(bic) w ac(b~c) * ac u a u a(b+a).

If xy U x, x+y w y, then in the case x+C • x (and therefore

Ox a X) we get:

(x+c)y a xy X;(80)
x+cy a x+cxy U x+CX a X+C X.

In the other case x + c c c we have to prove cy a x+cy, and

this is valid, if Cy a y.

But if cy a c, and x+cy * x, therefore x U a, then

cy a X a x+cyo

Lema 24: In an ordered skew lattice the axioms (C) and (F) are

equivalent. They express that the ordered skew lattice is a chain

composition of nests.

Proof: In a chain composition of nests (C) and (F) are fulfilled,

because they are conservative axioms, and valid in a nest. According

to (F) two elements belonging to the same multiplicative halfnest

cannot belong to different additional halfnests, so that one of

these elements is additively strongly included in the other one.

According to lemmaW) has the same meaning in ordered skew lattices.

Lema 25: Any HI-axion jp (a,b) a W (a,b) valid also in V2,

the lattice with two elements, is fulfilled in every ordered lattice.

With ? (a,b) we denote here any well defined element of the

free skew lattice with two generating elements ab.

Proof: In an ordered skew lattice any pair of elements is a

subsystem, and therefore V2 or a halfnest.
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CHAPTER IV. DISTRIBUTIVE AND MODULAR

SK1W LATTICES

*8. Naturally the tolerant distributive law (73) and the modular

law (76) are not the only possibilities to generaliso - in a sille

manner - for the n~oommuttive case the distributive and the modular

axiom of the comuutative theory. Other possibilities will be studied

in the next paragraphs.

Before doing so we at first mention:

Lema 26: In any modular lattice the elements which are twofold

weakly included in the element y form a sub system.

This lema too - similir to lemmas 22,23 - shows that (76) is a

singularly simple and meaningful axiom.

Proof: l(77) and therefore (78) in fulfilled, and if sAy - S,

we have (xvs). y a xvz. At the other hand xAzFy 0 XAZ : the

elements x a and xAz are multiplioativela weakly included

in y . The rest of lema 26 is already expressed in lema 15.

We formulate now another distributive law:

(81) (D) 4 aA(bvc) M (aAb)Y(aAC),

(c b) a * (oVa)(bVa).

Obviously (73) is a consequence of (81).

Definition: A skew lattice fulfilling the axioms (73) and (81) may

be called a distributive-modular one.

The rest of this paragraph will entirely be devoted to the task to

determine and to discuss the free flat distributive - modular skew
l w

lattice with two generating elements anb.
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Lemma 27: The free flat distributive-modular skew lattice with

two generatig1 elements atb has 18 elements. It is superflat and

doubly distributive.

The term "doubly distributive" means validity of (81) and also of:

I (a b)^ C (a c),/(b C),

(82) (D2 ) VbA A A

I c(ab) - (c=a)A (c b).

Obviously (73) is a consequence of (82) too. But (81) as well as

(82) is *k stronger than (73), for (81), (82) are not conservative

axioms. But they both are HN - axioms.

The 18 elements of the skew lattice from lmma 27 - it may be

denoted in the following as W18  - are those of table 1.

TABLE I

UI ma v I  b

u2  ab v ba

U3=b+a v3  a+b

u4 b v4  ab + b
v h b + ba

U, a + ab 5

u6  b + ab v 6 = a + ba

u7  ba + ab v7 a ab + ba

u8  a + b + ab v 8 a a + b + ba

u 9  a + ba + ab v = ab + b + ba
9 a baa 9

Proof: From the generating elements a,b we get at first the

(superflatl) free flat HSL with elements a,b,abba. These

four elements generate an additive HSL which we show to be

superflat. It possesses the 18 elements of table 1.

We shall prove:
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(83) a + ab + b a a + b

(84) a + b + ba a b + a + ba;

from (83) we have (by substitution of b by ba)

(85) a + ab + ba a + ba;

from (84) we get, substituting ab instead of a:

(86) b + ab + ba a ab + b + ba.

From (76)(M) we have

(87) (a + b)a a a + ba;

from (81), second line:

(88) (a + b)b a ab + b.

Therefore:•)a + b a (a + b)(a + b) • (a + b)a + (a + b)b(89)

L n a + ba + ab + b a + ab + b;

now (83) in proved to be correct.

Then from (81):

(90) a + b + ba. a + b(b + a);

from (76):

(91) a + b(b + a) a (a + b)(b + a) •(a + b) b + (a + b)a;

therefore from (87), (88):

(92) a + b + ba a ab + b + a + *b=Lu b + a + *b&.

now (84) is proved to be correct.

Therefore the additive HSL generated by a. b, ab. ba indeed

is superflat:

We have to proe the relation x + y + z y + x + z only for the

case of three different elements;
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if z = b, only x,y . ba is to be looked for, and (83)

answers this. If z - ba, the three cases cleared by (84), (85),

(86) are to be considered. Therefore the elements of table I form

an additive (superflat) HSL.

Now we shall show that they form also a multiplicative HSL:

It is sufficient, to show that each one of them gives another element

of table 1 when multiplied with the element a from the right side.

The cases u3, v3  are cleared by (87), (88); the modular law

clears all those cases where the sum % or vk has as its

first member a or ab. The case v5  is cleared by v5 = by3;

and at last we get:

(93) u6  (b + a)b ; u7 = (b + a)ab;

u6 a - (b + a) ba -u 7 a U 7a.

Here the dual relation to (84) has been used. R E S U L T

All elements of the skew lattice looked for are contained in table 1.

It can also easily be seen now that bqth lines of the distributive

law (82) are fulfilled.

In order to prove now that all these 18 polynomials in table I are

different elements in our free system, we have to prove that they form

indeed a flat distributive-modular skew lattice. After this proof, it

is certain - in consequence of dual symmetry - that also the multiplica-

tive HSL of these 18 elements is superflat.

To perform this last step of our proof we make use of the skew

lattice W4  described in (44). This skew lattice fulfils (76)

according to lemma 23; and (81) obviously too. Now we construct the

direct product of seven direct factors W4 ; and we take from this

direct product the following two elements:

(94) a =
b z (v(OuluI1O).
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Showing that these elements ab generate 18 different

elements, we perform the rest of our proesf. We get these 18 elements

by calculating the 18 polynomials of table 1 resulting from u.1  a,

v b according to (++); the results are summarized in table 2.

TABLE 2.

u 1 - (uluOulIO#) v1 u (vIOulullo)
u C. uguouuto ) vz - (vlouuuioo)

2 2
u U (ujuuu1 1l) v3 M (vluulu111)

. (uluuulIli v- (vluulu11o)

us a (uluOuulOl) v 0 (vlOuuu110)

6 " (uluuuullQ) v6 . (vluuuulol)

u7. (uiu-uu1o0) v 7 u (vluuuuloo)

u8 M (uluuuu 11f) v8 a (vluuuulll)

u a (utuuuuloV) v 9 - (vjuuuul1o)

Lemma 28: The skew lattice W18 of Lemma 27 can be represented

1_(94) as a sub system of the direct product of seven direct factors

Apart from helping to prove lemma 27, the representation (94)

leads to further valuable information about the skew lattice W18 .

1) Introducing as a further additional axiom that one formulated in

(65), we get in W18 the congruences

(95) u6 R v9 ; u9 1 v6 ; a u? A v7 ; u8 a v8.

They arise from table 2 by introducing U = v according to (65).

Therefore:

Lemma 29: The free flat halfcommutative distributive-modular skeW

lattice with two generating elements ab has 14 elements. It can

be represented by

(96) a = (uOull); b = (Oulullo)
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as a sub system of the direct product of six direct factors Wh°

2) Introducing additionally the axiom (68)(C) - according to lemma

24 the axiom (67)(F) would lead to the same result - we have to consider

that (C) is valid in nests and in lattices, but not in a halfcomutative

halfnest. Therefore in table 2 we must omit the letters between the

strokes in order to get the skew lattice of the congraence classes

in W18  corresponding to (C):

(97) a w (ujol); b = (vJlO).

Lema 30: The free system with two generating elements among the
distributive-modular skew lattices fulfilling (C) is the direct product

of tw direct factors V2  and one direct factor N2 ( = nest

with two elements).

3) Introducing the "supermodular" axiom

(98) x (cty) a (x c),y

in W18 - the modular axiom (M) is a weaker consequence of (98) -

into W we have to omit from (94) the two direct factors

because V2  does not fulfil (98). But (98) is an HN-axiom. Therefore

we get in W18  from (98) the following congruence classes:

u1 = (ujuOul) v 1 a (vIoulu)

u2 .E u5  v2

- (uiuouu) is (vjouuu)
(99) u 6 Y4

4L (uluuul) * (vruulu)
u6 m u7 W u 8 9 u 9  v6 a v7 ! v8 I v9

IL (uiuuuu) a (vluuuu)
I'

Lemma 31: The free flat supermodular distributive skew lattice with

two generating elements a a ul, b u u2  has 8 elements. It fulfils

-every EN-axiom 4f(a*bocte*.)
44
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Proof: This W8  is a sub system of direct product of halfnests.

Immediately from lemma 27 and lemma 28, together with lemma 25, we get:

Lemma 32: All those HN-axioms (alb) - 2(alb) which are

valid also in V., are fulfilled in all distributive-modular skew

lattices.

9. We discuss now the special ordered skew lattice W from (44).

This W4  and the direct products of direct factors W), fulfil

a series of meanigful axioms. These we shall summarize ( as far as they

are known) and then discuss their connection or indbpendencies.

0) W4  is flat.

1) Every HN-axiom T (ab) - f(a,b) which also holds in V2

is valid.

2) The distributive law (DI), (81) is valid.

3) The modular law (M),(76) is valid.

4) A second modular law

(100) L(a b)Ac1.(b~a) - (aVb), cv(ba)

is valid. This is again a dually symmetric HN-axiom, but

not conservative.

5) The HN-axiom

(Ha) (b + c)(a + c)a a (b + c)a,
(101)

a + ca + cb = a + cb

is valid. - Proof: Its second line is fulfilled in W4  in

each one of the cases c 0 1 and c.4 1.

Obviously (H*) is a weaker consequence of (H), (69).

6) The axiom

(b + c)a(a + c) . (b + c)a,
(102) (C )

ca + a + cb = a + cb

is valid. - Proof as for (H*). This is a consequence of (C),(68),

and a weaker one: It is not an HN-axiom, but it is valid in

every flat skew lattice which is a halfnest. -(In the following

we use for such a case the denotation HN -axiom).
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7) Any sub'system generated by three elements bc, ac, ab is

doubly distributive and superfiat.

Proof: In W4  in the case a = 1 and in the case a.* I

this sub system is generated by only two elements.

8) Any sub system generated by three elements bc, ca, ab is

doubly distributive.

Proof: In W4  such a sub system is generated by only two

elements, if one of the elements a, b, c equals 1. In the

other case it is a halfnest.

9) The following axioms are valid:

(103) (b,c),(a.,b),(a.c) - (b,,a) ,(cva),(b,c),

(104) (bAa)vb,bc)vAa,,c) - (b Va.) A(b vc)A(a c)

(105) (bA C)(ba) V(a AC) U (bva.),(a-c),(bvc),

I(106) (aAb),(bAC)v,(a,,c) a Cbva), (b~o),(c a),

(107) (c Ab)v (a) (a~c ) -(cv) ba),bc),

(108) (a b),, (cb) V(a Nc) = (ca),(bc),b ,a).

Each one of these six relations is a dually symmetric distribut~ive

law; (106), (108) are HN ' -axioms; the other four ones are

HN-axioms.

10) The following HN *-axiom and the dual one are valid:

(109) cb +ab + ac aab+cb +ac.

This is a special case of 7). It has the consequence that (107)

and (108) ari equivalent.

11) The left hand sides of (103), (104), (10.5), (106) are equal;

and the corresponding right hand sides are equal. Therefore the

four axioms (103), (104), (105), (106 are equivalent.

We write separately:

(10)bc + ba + ac aba + bc + ac;
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this in an HN-axiom, and again a special case of 7).

And:

(111) bo + ab + ac - ab + be + ac;

this is an HN -axiom, and again a special case of 7).

And:

(112) bo + ab + ac a bc + ba + ac

This curious relation is an HN-axiom.

We now give some further remarks about the connection between

these axiomatic properties of direct products of direct factors W4 o

A first contribution is given by lemma 32: The properties 0),2),3)

have 1) as consequence. We prove now, that 0), 1), 2) lead to 4),

or more precisely:

Loma 33: Th, distributive law (D.) together with the two conservative

HN-axioms

(113)(a + b) (a + b + ba) =a + b + ba;(113)
L (a + b + ba)(a + b)ba = (a + b + ba)ba

leads to the second modular law (100).

Proof: From (D1) we have:

( (a + b)(c + ba) u (a + b)c + (a + b)ba

(l14) a Ea + b + (a + b)ba[o + (a + b)ba

m (a + b)[a. + b + ba]c + (a + b)ba]

and then from (113) and (D):

(a + b)(c + ba)

(115) [a + b + ba][Cc + (a + b)ba3

a (a + b + ba)c + ba a (a + b)c + ba.

By quite a complicated proof the author has shown in his last

paper about skew lattices:
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Lemma 34: Property 7) above is a consequence of the combined axioms

0), 2), 3), 5), 6).

The proof may be omitted here.-

The property 8) has not yet been studied; it is unknown which axioms

can guarantee its validity.

Under 10), 11) the four axioms (109), (110), (111), (112) and the

dually correspondbag ones are speciai cases of 7), as mentioned'

already above. But among these (110) can be derived already from 1)92):11

Using our results concerning W18 ) we have

be + ba + ac a b(c + a) + ao a (b + ac)(c + a + ac)
(116)

(b + ac)(a + c + ac) = bVa + c) + ac = ba + be + ac.

Also the distributive law (103) is a consequence already from 1),2):

bc + ab + sa-bc + a(b + c)
(117)

L u (bc + a)(b + c) - (b + We( +e a)(b + c).

The distributive law (10?) is a consequence of 0), 1), 2): In a

flat skew lattice (M) gives also

(118) cb + a(b + c) - (eb + a)(b +c)

because ob is twof~ld weakly included in b + c. Similar as in

(117) we come from (118) by (D1 ) to (107).

The axiom (112) and the dual one remain as probably independent of

the other ones.

§ 10. The supermodular skew lattice W8, defined by (99), is an

example of a class of skew lattices which we shall study more closely

in this paragraph.
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Lemma 35: In the supereodular case we have

S be + barn ba;
(119) b )( ba• a(a + b)(€ + b) w a + b.

Proof: According to (98) and (2) we have

bc + ba a (bc + b)a f ba.

Lemma 36: In the supermodular case also the second modular axiom

(100)'is valid.

Proof: From (119) we get:

(a + b)c + ba = a + bc + ba - a + ba;

(a + b)(c + ba) - (a + b)(c + b)a = (a + b)a - a ba.

Lemma 37: In the supermodular case each one of the axioms (D),

(D1 ), (D2 ) is equivalent to

(120) 5 ab + c a a + c)

I a(b + c) a ac.

Proof: From (DO ) we get now:

a(b + c) - a(b + ac) - a(b + a)c a ac;

therefore (120) is a consequence of (D ). With (119) we get
0

(120)(D1). From (120) we come to D2 ) thus:

(a + b)c a a + bc n ac + be.

Lema 38: Any superflat superaodular skew lattice is distributive.

Proof: From (119) we have in the superflat case:

bae x n bc + bae x a ba + be + x bc + x,

and with a a b:
b + x= bce x.

Lema 39: Any distributive superaodular skew lattice fulfils

every IN-axiom 97 (a,b,o,...) •t(abo,...)
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Proof in the following.

Lemma 40: The skew lattices (studied above) with aUb * avb are

distributive and supermodular.

For they fulfil (120) and also the defining axiom (98) of supermodular

skew lattices. Generalising this type of skew lattices - analysed in

lemma4*-we can say: Let the skew lattice W1  be a multiplicative half.

nest, and the skew lattice W2  be an additive halfnest. Then the

direct product W1X W2  is a distributive supermodular skew lattice,

because it fulfils every HN-axiom.

Lemma 41: The free (or free flat, or free superflat) distributive

supermodular skew lattice with n generating elements is a sub

system U 4 the direct product of two skew lattices W1 , W2  thus

that W1 is a multiplicative, and W2  an additive halfnest.

The additive HSL, of W1  and the multiplicative HSL2  of W

is the free (or free flat, or free superflat) HSL of a generating

elements. The sub system U is the set of those elements in W1 K(W2

in which the last summand in HSL (one of the generating elements)

is the same as the first factor in HSL 2.

Proof: The looked for skew lattice W being doubly distributive,

each of its elements is an element of the additive HSL generated

by the elements of the multiplicative HSL generated by the generating

elements a,, a2 ,..., an. But in any such sum only the last term

has to contain more than one factor ak - the other ones, according to

(120), can be written as single elements aj. Therefore the general

element a of W can be written as a - ' + A, where o(

is an element of the additive HSL generated by the ak, and

A an element of the multiplicative HSL generated by the a.

If the first factor of A is aj, then

(121) a - I + A - (o' + a )A,

so that a may also be written as a Q W A where the last summand
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in o is the same generating element a as the first factor

in A.

The operations A ' then take the formI o.A + B * oL + ()B,
(122)O.AB - ,AB.

This proof of lemma 41 gives also the proof of lemma 39.-

Let us now construct according to lemma 41 the not flat generalisation

of W8.

Lemma 42: The free distributive-supermodular skew lattice with

two generating elements ab has 18 elements, as given in table 3:

TABLE 3.

81 = a t I = b

a a ab t2  ba

s3 = aba t 3 a bab

S4 m b + a t4 = a + b

a5 = b + ab t5 = a + ba

s 6 = b + aba t6 a a + bab

7 a + b + a t b + a + b
7 7

s 8  a + b + ab t 8  b + a + ba

9 a + b + aba t b + a + bab
9 9

From table 3 we come back to W8  by upsetting the following

congruences:

(123) P 87  t4 L t7
a t 6Lt 8
5 x 6 6 L 88 t 9 5 a 6 V-t8ILt 9
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According to lemma 41 the free distributive supermodular skew

lattice with n generators has -B(n)2  elements, if B(n)n
is the number of elements in the free HSL with n generating

1 2
elements. Therefore we get 18 u -. 6 elements if n u 2.

In the case n a 3 we should gt2 elements

For free flat or superflat skew lattice of this type we get as

number of elements:

(n-I . 2 - 2
(124) n.2 , respectively n!(n-1) R

CHAPTER V. CONSTRUCTION

OF

SKEW LATTICES FROM LATTICES.

§ 11. In any HSL -we write it here as an additive one,

denoting the composition by , - a function fa - a' of the

element a may be defined, having the properties

fai,,a s a;
(125)

f(faub) u fafb.

Then we get a new HSL with the same elements, but with a

new composition, defined by

(126) a,,b = faeb.

Proof: From (125), (126) we have

(127) ava w f*,.,a n a;

a,(bvc) a (avb)vc.

Lemma 43: The two elements fa and ffa form a halfnest

in W.
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Therefore in a commutative W we have

(128) ffa = fa.

Proof: From (125) we have

(129) ffafa - fag

ffa = fa.ffa.

Lemaa 44: Weak v-inclusion of a in b is equivalent

with weak u-inolusion of fa in fb. Weak v-inclusion

of a in b kas the consequence of weak v-inclusion of

a in b.

Proof: ayb a b means favb a b, therefore

f(foub) a fb = fafb. At the other hand from fb a fa.fb

we get fab a b. - From ab a b we have fab a ab a b.

Remark: Sufficient (not necessary) conditions for the second

line of (125) are:

S ffa a fa,
(131)

(U )f(ab) = fafb.

I

i
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Lemma 45: In the case W- V (" commutative) and (131)

we have

(132) f(ab) - f(fa,,b) - f(fa fb).

Proof: From Lemma '#we have

f(a~b) f fab);

this together with

f(a b) fa fb u fab,

f(ab) = ff(ab) = f(fa~b)

gives f(anb) - f(faeb).

Obviously ffa = fa is a special case of (132).

Lema 46: Replacing in a skew lattice W with compositions

denoted by -,, v the composition % by y according

to (126), with a function fa having the properties (125),

we get a new skew lattice W' possessing the same elements

as W, but the cohpoaitione a

Proof: Additionally to the remarks made above we see that

replacing -% by V we loose no case of additive weak

inclusion, (according to lemma 44), and we win no new case of

additive strong inclusion:

fab a a -- ab = a.

Lemma 47: If the w-HSL in W is flat (or even superflat),

then the y-HSL in W' is also flat (or even superflat).

Proof: From the axiom avba a b~a we get ava *

fawfbva m fafbfaa a fb.,faa a fba. From the axiom

&ab~oi b.ac we get avbvc = bravO.
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All these facts are valid in dual symmetry for n ,A instead
of V and we may also replace both % by A)V

acc'ording to (126)

and

(13) a.b *a,,Fb

with

(134) Fau= a.

The new skew lattice with A v may be called Wr.

Together with W the new Ir is flat or even superflat.

Therefore we can by this construction derive from commutative

lattices only superflat skew lattices, even if we make

repeatedly such a replacement.

Leman 48: If W fulfils the axiom (C), then W' fulfils

(C) if and only if

(135) fFa = Ffa a a a.

Proof: From (135) we get with (2) that

(ba)va - f(b. a),,a

= f(b.Fa).fFa.a = f(f(b.Fa),,Fa),a
- f f(f (bO,.,)(b,IFa),Fa),, a

u f ((b~a),FaJua a fFaa a a.

At the other hand any element a with the property fFa4 a

would give (Vaa)va a fFa,,a *a.
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Lemma 49t: If W fulfils the axioms (C) and (M), then W

too fulfils (M).

Proof: It is sufficient to discuss the case Fa a a, which

means that only replacement of by V is performed. If (M)

is valid in W, the case xy a x and xvy - fxy - y

gives:

(136) (xva),y a (fxa).y n fx(a.y) a uv(&,y).

Now from (C) we have fa,a a fa as consequence of fa - a,

and therefore:

(137) fx~y a fxxy a fxrx a fx.

Lemma 50: If W fulfils (C) and (M), then the definitions

(138) fan &,,&; Fan s'a

with two arbitrary constant elements se' fulfils (125) and

(134). Therefore (138) gives then a modular skew lattice ir.

Proof: Validity of (134) is to be seen from

a ('~)~(~b uFaft;

for s x is twofold weakly included in sn b - y. And we

have

(14o) ,,a w a,.,(s . a) = a.

Loma 51: In the case of a distributive lattice W - V we got
by (138) a skew lattice fulfilling the two distributive laws

(Dj) and (D.
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Proof: Writing

f a asn Faua' + a

we getwe gt I c^[bvaj u c(e' + be + a)9

(140,1) (CA b)V(c Aa) = [c(a' + b)l• + C(S' + a)

= c(s's + be + a' + a)

0 [bva3 c - (be + a)(a' + c) ,
(bAc)v(ac) - b(c + s')a + a(c + a')

= (be + a) (c + a').

Lemma 52: If W is a distributive lattice V, and

fulfil (131) and the dually corresponding relations

(141) FFa. Fa,

F(vb) a FaFb,

then Wr is tolerantly distributive.

Proof: We have also the dual relation to (132), which means:

(142) F(ab) a F(a'Fb) a F(Fa.,Fb).

Now the relation

ca(b a) a c [b,(cAa)]

wins the meaning

c F(fb a) - c.,Ffb,.(ocFa

0cF [(fbvc),,(fb,,Fa)j a c,,F(fbc),,F(fb,,Fa)

Uc fF(fb,c) F(fb~a);

and this indeed is fulfilled in consequence of
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F(fbc,,o) Fc) c;

according to lemma 44 and the dual statements. -

At last we discuss some possibilities to construct functions

f,F in certain special cases of commutative W = V; in

these cases the second line of (125) will be fulfilled in the

special form (131).

Construction I: The lattice V may consist of those pairs

a U (A1 , A2 ) of elements A, B,... of a lattice V0  which

fulfil the condition

(143) A1  2;

and V may be a sublattice of the direct product of two

direct factors V
0

Definition:

(144) fa a (A1 , A1 ); Fa = (A2 , A2 ).

Construction II. Again we take a lattice V° z fA, B,... i

and we form a direct product of three direct factors V . We

define V as the sublattice of this direct product e9h

consist' els a - (A1 , A2 , A3 ) which fulfil

(145) A, A2 A3 .

I,

Definition:I.
(146) fa a (Al, A1 , A3 ); Fa a (Al, A3 , A3 ).

In this case axiom (C) is valid, according to lemma .

I,
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Construction III, including and generalising the constructions

I, II: Again we teke a direct product of direct factors Vo;

the elements can also be denoted as functions a - A(k) of

an index k, the A(k) being elements of V In the sot

M of index values k any quasi order (as defined above)

may be given; and we consider now the sublattice of those

functions A(k) with

(147) A(k) S A(l) in each case k C 1,

In the set M there may be defined two functions

4f W- q k, 4(k) 4k with values out of M' fulfilling

with respect to the mentioned quasi order the relations

(048) f k k -k k.

Definition:

(149) (fA)(k) - A(.k)
(FA)(k) 

a A(cOk).

Sufficient for (C) is

(150) ? k Ck C- OT k;

and (150) is also necessary for (C), if V0  has more than

one element.

The following example includes the constructions It,1:

k w 1,2,... ,n;

1k if i . k;

k {j if k~ J9

nif j S k J.

JI.
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Lemma 53: If Vo is a distributive lattice, then construction I

leads to a skew lattice W" fulfilling the distributive law (D2).

It may have some methodical interest to give two different

proofs of this remarkable lemma.

At first we consider the simplest special case: V may be

the lattice V2  of only two elements. Then W is the ordered

lattice of 3 elements:

'I
z

We have

(151) f(O) a f(z) a 0; f(1) = 1,

F(1) w F() n 1; F(o) = 0.

That this case fulfils the relation

(151,1) (avb),c - (ac),(b~c)

(and the dual one), can be seen easily by direct verification.

At the same time we see that this is an ordered skew lattice,

corresponding to the symbol

(152) ^ (12)I,(21).

Now we proof lemma 53, using the fact, that every distributive

lattice is a sublattice of a direct product of direct factors V2 .

Therefore the W of our construction is a sublattice of

another W which may be described thus: We apply the construe=

tion I to a Boelean lattice ( a direct product of direct factors

V ). Nowto apply construction I to a direct product W -

W W' (2- means to apply it to each one of the direct factors

W 1 ), W(2 )  getting W( 1) jw(a) and then forming the

direct product

I
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(153) w" W w( ) ' W( 2 '

Therefore the validity of (151,1) in the case (152) means also

that (151,1) is valid for W '  and then for

A second proof of lemma 53, to be represented now, does not

make use of the fact that each distributive lattice is a sublattice

of a Boolean one. (This fact naturally allows also another proof

of lemma 51).

We simply calculate, using again .,+ instead of

I (ab)Ac = (A1 + B1 , A1 + B2 )(C2, C2 );
(a c)v(b c) = (A1 C2 , Al, 2 ) + (BlC 2 , B2 C2 )-

Remark: If a f,F -construction, applied to a skew lattice

with orthogonality, fulfils

(154,1) ?'. - a,

then also

(154,2) a AC *.a

The results of this paragraph show# that we can get by the
f,F -construction a rich material of skew lattices fulfilling

the tolerant distributive law (D) as well an the modular

axiom (M). But the skew lattices constructed in this manner

from commutative lattices are quite special ones in a certain

respect: They all are superflat ones.

Therefore we shall proceed in the next paragraph to study

another construction leading to examples which are still flat

ones, but not super flat ones. The resulting new skew lattices

have been partly already discussed above, for after having been

detected these new examples showed themselves to be accessible

also independently of the construction method of the following

b
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paragraph. But in spite of this the following considerations

will lead us to some new aspects of the theory of skew lattices.

§ 12. At first the concept of skew lattices with orthogonality

may be discussed a little more thoroughly.

An orthogonality a - a with

(155) ua -

'AC
exists in every lattice which cah be represented by a graph

symmetrical to an horizontal rectilinear line. For instance:

0 -s

We define a as symmetrical to a . In the case of the free

lattice with two generating elements uv we get thus:I,

(156) 1 ;I, . u, .v.

But we can also use the fact that this free lattice with two

generating elements is a direct product V2 XV2 , so that the

orthogonality 0 - 1 in V2  gives the orthogonality:

(157)

( 7 - v; V = u.

In the general case of a skew lattice W possessing an

ti
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orthogonality it may be Aa an involubrial automorphism:

) AAa u Aa;

(158) A(a4b) a AaAAb,

/k~a~b) a AaVAb;
L Aam Aa.

Such an aatutorphism exists especially in the case that W

is a direct product with two isomorphic direct factors.

Lema.a 54: If (158) is fulfilled, we get a new orthogonality

a- a

bi the definition

(159) a - Aa.

Proof: We have

(10)a - As, a AAR a AAa •A;

(160) - A(A - A(cZa) . A A V

Now any distributive lattice V with operations , and

with orthogonality may be given, and we make the

Definition:

aAb w a(b + ) ab + aa,

bva a ab + a = (a + )(b + a).

Lemma 55t: With these definitions (161) the elements of V

>7
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form a skew lattice W.

Proof% Indeed we have at first:

(a~b)X . (a~b)€ + (sAb)C(-b)

(162) - abc + aIo + (ab + aa)(ag + 5)
S abe. + aac + abb + aab + aab + as
abc + abg + as;

and

a A(b Ac) a a(b c) + aa

(163)
L abc + abb + as.

Therefore the compositions A) V are indeed associative ones.

Secondly we see, that replacing , i by A,V we loose no

case of weak inclusion, and we win no case of strong inclusions:

1A 1 a,,b •a - a~b =a;

(164) / ju-~ ba

ab Va b --. b a b.

For ab m a gives aAb aa + aa = a; and

bVa a ;b + a ab gives a a b.

Lemna 56: W fulfils all axioms qf(a,b,c,...) -

!' ' (a.b.c....) which are fulfilled by W11.

We shall see later that in all these cases W can be constructed

as a sub skew lattice of a direct product of direct factors W4.

I.W-

*1
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Then lema 56 is an obvious consequence. But we prefer to

show here at first by direct calculation that lemma 56 is correct.

According to § 9 we have to prove the following statements:

W is flat. For from (163) we have abbAa, aAb.

W fulfils (!Q. If x is twofold weakly included in

y, we have xy + xx - x, yx + y - y.

Then

r ~ ~ xcAY) 0 (cAy7X + (CAY)
(165)

a (c7 + F)x + c(y +
STx + cy + cc;

(I I (xc)My ,.,cly + (x¢ 'c)(

(166))
- (Tx + c)y + (;Fx + o) F(! + c)
M O x +oCy,+ Coo

W fulfils (DI). We have

aA(bVO) = a[(bc) + ii
w - + a +

(ab)V(aAc) - (oj)(ab) + (a A)

Sa= (ae + ')a(b + Z) + a(c + i)

n If(c + E) (b + 1)+ c + Z

f acb + c + j

W fulfils H . We have, using also (163):

(167) -(b,)a - + o

a(ib + oc)[a +e +
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J-

G b + o)a + (bF +.g);

(boo), (a) a u VoC) [a + (T;)J (41;)

(168 ) u (b + c)(T + o)a ( + o) i.(b + o )c ) , a)

- (7ab +c)1[a + (a + 01J (bF+ c)

- (7b + C)a + (ab + + Z(bV + c)

- "b + .) a + Z(b" + a).

W fulfils C . We have according to (163):

(16) (~o)a,~a~c *(b c)aE(avo) + Z* (b~c)(VI)

9 ("b + c)afca + c + Z] + (Zb + e)c€b + C)

- a("b[ + ';] + ) + '(bF + c)

= ("b + C)a + 7(bg + c),

equal too to the expression (167).

W fulfils (112). From (163) we have:

(170) (cva-)A (bva),(cVb){c V &-) [(Na)[(o V) (q)3 + (+ + )]

i! Here we have:

(ba[Cb + (ZAS)

(171) ) ;b +) + b* , ;(b + a)]

L ib + ac + b +].
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At the other hand:

(a a)a.ab) ̂ (ob)
(172) . (c)L~,(a )[ cb ) . )] , (S+C)]

with

*(Va + b) [Se + b + VG + *

SA& V ac, + Sb. a *a b

, Ea(c + b + + b.

Therefore (170) equals:

(c + a) [ ;b + aES + b + + W + a)]

and (172) equals

(ic + a) [Ss c + b + )+ b + '(E + a)

(175) a ;a b + a + a + b + + b +

Applied to the case (156) our definition (161) gives the skew

lattice# W4 . Therefore our proof of lema 56 gives also a
new proof of the discussed properties of W4 0\

At last we mention still another possibility to define in a

I
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distributive lattice with orthogonality a certain seai group.

Let us consider

(176) a~b ab + a+

Lema 57: This comosition (176) is an associative one.

Proof: At first we see that

a - (a+;)(b +)( a)

(177) •a(b + ) + ;(F + a)

= a b; .b.

Therefore

(178) a + b.

Andt

d (a t b)(a +

(179) a (;b + ag + Z)( b + ab +d)

a b+ abb. a;.

Now we have

(180) a I (b + c) a ;(b :t o) + a(b t +{ ;(go + be + b;) + a(II + be + bi) +

(a b)±o - (a + F)o + (a t07
(181)

+ M + abF +al

* abo +Io

+ aF+ ab + al.
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From (181) we have also

(182) a a atsx. aix ta

Proof. both sides of (182) equal

(183) (a + ;)x + ;a.

Therefore

(184) a a +.b +.b a + b a+ b;

that means: Thesingular" elements a ; a form a sub semi xrou.

As one sees from (176) we have

(185) { a + a a+ a.

From the expression (183), equal to (182), we learn also that

(186) a + a + a = a.

Therefore this semigroup is not an HSL, but a generalisation

thereof. But the sub semi group of the singular elements

a * a is an HSL.

A simple calculation shows that the definition (176) may also

be written thus:

(187) a t b s (a,)v(;b).

The constructions of this paragraph can be generalized in such

a manner that instead of a. distributive lattice a superflat doubly

distributive skew lattice is used. But then the calculations

become so awfully complicated that I prefer to omit them here.
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CHAPTER VI. DIRECT PRODUCTS OF

ORDERED SKEW LATTICES

§ 13. In the theory of lattices we have the well known

Lemma 58: Each distributive lattice is a sublattioe of a

Boolean one.

It is the chief aim of this chapter to explore possibilities

of a non commutative generalisation of this lemma. This surely is

quite an hard problem. Being still far from any solution of it,

I can give here only some ptparatory remarks. But these already

seem to show that this indeed is an highly interesting mathematical

problem.

In order to get at least a well defined question, let us make

the following

Definition: A skew lattice W belongs to the class D,

means that it is a sub skew lattice of a direct product of ordered

skew lattices.

A skew lattice W belongs to the class D', means that

W has the structure of a certain system of congruence classes

in a skew lattice belonging to class D.

From general considerations (P. Jordan, Abhandl. Math. Sen.

Hamburg ) it is probable that the class DO

can be characterised by some axioms valid in each skew lattice

of type D'. How are these axioms to be found out? Surely the

tolerant distributive law (D ) and the modular law (M)
0

belong to them; but are they already sufficient?



- 56 -

Another question arises: Are the classes D and DO idenx

tical, or can we find examples of skew lattices belonging to

DO, but not to D ?

In the commutative case the answer is contained in lemma
58; we formulate:

Loma 59: If V is a lattice of congruence classes in

a lattice Vo  which is a sub lattice of a Boolean ones then

jjjV is al souivalont to a sub lattice of j MW ar+

The proof of this lemma is not interesting in the frame of
lattice theory, because it is only a special case of lema.

But we give here a proof which is independent of lemma 58.

The elements of Vo  may be represented as functions

f(x),g(x),.., of x . 1,2,... o with values f w 0 or 1.

We have

f 1g a fg;
(188)

I fg 0 f  +  8 " fg.

Two spoial elements fog may be congruent, and we consider

-the system of congruences generated by the congruence f a g.

The two functions hl(x), h2 (x), belonging to Vol may

have the property that hl(x o ) h2 (xo ) has the oo -ence

f(xo) +g(xo). Then we have h1 .h 2 .

0 2



For if

(189) (h 2h2)(zo 09

L (h1lh 2 ) (x o ) . I

has the coo~nce

(10) (fg) (zo) 0,

(fg)(zo) * 1,

then for all values of x we have:

t t Shl = ,gh2 ,

(191)
fogvh 1 - fgi;h 2 .

Now the congruence f 2 g

gives

f, fh a f ,h 2 ,

(192)
: h I a f,,,h 2 ,

and h, =.h2  follows fro the

Romark: In any distributive lattice from

a., a b,€ and ac a bc we have a = b.

Proof: We have

(193) (ab),(ac) - a,(bo) a,(ao,) - a;
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and by permutation of alb in this relation we get a =b.

Therefore: The congruence class of any h I(x) in

determined by the values h (x') for theme ' x in which

f(x') *gx)

Lemma 60: If a skew lattice W with two generating elements
a.b belong. to class DO. then it i. doubly distributive.

If -A flat one, it is also ouperflat.

Proof: In any W of class DO every HN-axiom

(19 4e) (a,b) ( ~ b

valid in V2  is fulfilled, as we know*

Any HI-axiom

(195) (xqyqz,...) * L(xqy~z... A(S)

valid in V2 , is then fulfilled-in W For inserting sy

special elements *'f[0W ur a x(a,b),y uy(a,b),..., we

got

(196) (x(a,b),y(a,b),s(aqb),...) un?(a,b),

ad the validity of (195) for these xlyIS,... is given by

one of the characterised axioms (194).

Therefore W is doubly distributive, so that (D 1  and

(112) are fulfilled.
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In the axiom

(197) x + y + z y + x + s

of a superflat W we again insert:

(198) x(a~b) + y(ab) + s(a,b) a y(ab) + x(aob) + z(a,b),

getting a relation C(ab) a I$.(aob), fulfilled in the case

of an additive halfnest. But ij the case of a multiplicative half=
nest, sad a flat W, each one of the elements xoyoz reduces

itself to one of the elements ab,a + b, b + a; and then again

(198) is fulfilled.

Knowing lemma 60, we immediately can write down the elements

of the free skew lattice of class D' with two generating
elements: Thus we come to our skew lattice W18 studied above.

Lema 61: If the class D (or the class D') of skew lattices

can be characterised by axioms which are HN-axioms, then the

following consequence is given:

Lema 62 (hypothetical): Each HSL is a sub system (or

equivalent to a system of congruence classes in a sub system)
of a direct product of ordered skew lattices.

We sake a little test concerning this hypothetical lemma 62:

Tom following statement - an extremely special case of lemma 62 -

at least can be proved:

Lomma 63: The free flat HSL with n generating elements

is a sub system of the direct product of direct factors

V (12).
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I

Proof: We take the direct product of n(n + 1) direct

factors W4 . Any one of the generating elements ak  may be
II

represented by a series of yn(n + 1) elements out of W4;
this series may divided into shorter series contain±nig

n, n-l,.... , I elements. We write:

(199) ) Wk 1 (n) k n ) ...(,) () WI -(n .. _ WkI -l .1)

with
W(U) •U;
kk

w ,(k) v if j <k;

W) 0 in all other oase.re

For instance we haveif n 4:

a1 (uOOOIuOOuOIu)

a2(OuOOIOuO(vu 10)

a3 (OOuO(vvu 'OO 1o)

,, a4(vvvwIOOO IOO io)

Or for n 0 5:

a (uOOOOIuOOOIUOOuOlu)

a2 a (OuOOOIOuOOIOuO'OIO)

Id a3 a (ooio0~o~lvvuIOOo0)
a a (vv0OU00010 00TY10040).
% (OOOsaOIvvvuIOOOIOOIO)

a, N (TVVvUIOOOOIOOOgOOIO).

4
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All elements generated by these ak  belong to a multiplica.

tive WSL because Outv form a multiplicative HSL

in Wk. Additively these ak generate a flat v-HSL with

elements

(201) { k +% 'k+ "'" + %-'
t al .4 +•a, La + .. " + a,

which are different: a * b, exactly if the corresponding

elements of a free additive flat HSL are different,

according to our discussion above. For in

(:0:) a = (zn) ... (n) lz(n-).(n-I i...Z(,))

we see from the elements Z wateemns r
r' what elements akS are

contained in the sun (203) for a. If ah belongs to then,

then Z (h)- Q; if not, then Z h ) 30. At the other hand,h h
if a and a occur in the sun a, then we can see from

p q
(202)) wether a: stands left and aq right, or vice versa.

q p
If p>q9 and a at the left side of aqt then Z(P) Uz(P)8 P , q

otherwise Veq

It would be nice if we could now generalise lemma 63

so that for all flat HSL it would be shown that representation

as sub system of direct products of ordered HSL must be

possible - by a further step similar to lemma 59. But I cannot

yet say whether this generalisation is possible. -

From the last considerations and results we gather the
impression, that the tolerant distributive law (DO) alone is

to weak in order to characterise - together with(N) - tiM

claS D or DO.  Therefore the question arises whether

there exist other distributive laws valid too in all ordered

skew lattices.
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A contribution to answering this question is

Loma 64: The following relations (each one of these four

lines) are conservative HN-axiomas iving common distributivity

in the commutative case; and they are fulfilled in every ordered

skew lattice:

(204)(D*) 5 ca + c(a + b) + ob . ca + ob,
(b + c)(ba + c)(a + c) a (b + c)(a + a);

(205) (D;) / ac + (a + b)c + be a o + be,

(c + b)(c + ba)(c + a) a (c + b)(c + a).

It is not necessary to say anything about the proof of this

lesa; it42orroctness is obvious as soon an it has been

formulated.

But the consequences of this statement are not yet known.

§ 4. The conviction that it might be possible to reduce

distributive skew lattices - if properly defined axiomatically -

to direct products of suitably chosen ordered skew lattices

gains strong encouragement by a fact detected by W. Bgog:

Leama 65: Each skew lattice constructed from a distributive

lattice according to (44 ), is a sub system of a direct product

of direct factors W1 .

Proof (W. BiSge): We start



- 63 -

from a lattice V. Let h be a system of exactly two

congruence classes in V ; and N the set of all these

h e We can describe h as a function of the elements x

of V, possessing the values 1 and 0 according to the

two congruence classes: From h(x) a h(y) s 1, h(s) a h(t) w 0

we have

h(xy) a h(x + y) s h(z + x) a 1,

(206)
h(zt) a h(z + t) a h(zx) - 0.

With x) we denote another function of x, having as

values sets of elements h of H, in such a manner that

(z) is the set of those h which fulfil h(x) W 1.

We ask now under which condition th/ubsets or of H form

a lattice (if composed as subsets of H by ) which shows

isomorphism to V.

Lonna 66: This isomorphism is equivalent with distributivity

in V.

For at first it is trivial that this lattice of the

is distributive. But at the other hand distributivity in V

is also a sufficient condition. Two elements a + b of V

have qf(a) + gp(b); that means: It exists surely an h

with h(a) * h(b). One of the elements ab - may b -

may not be included in the other one. We take from V two

subsets of elements:

Vwith x a
(207) 0 it ~



-64-

These -r an eapeof par U of
V0  v 1  a0 ~ V~w p~r o1

subsets of elements of V with t -he following properties:

UOU Septy,

0 y~( y Uo

A& 0 0~ 0

set,

0=

Hefolws myetethcopitnsnteltie

Iecn fhendaseo hamaximal pair U U ht e thavro

(208) U0  U4=U1 V

For if the element 0 of V would not be contained in
U Uthen we have the following consequences: Let0oVU,

be the set of those elements of V which include any element

of C . U1. WO have U1 ) U1  and Ulf4 *U1. because

C C- U4. The pair U, Ulf fulfils ot),',S), and
therefore U0 ull cannot be empty.
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From ) we have then that U0 ^o.U1 too cannot be empty;

and correspondingly U, (a + U ) cannot be empty* If now

a0 r U 1 I U1  witk ouI U0 a + u0 EU 1, and

according to ) the element uoU 1  belongs to Uo, we have

from S) a contradiction to )t

(209) U0U 1 + cu1  (uo + )u 1

belongs to U as well a to U1 . Therefore (208) is correct.

From (208) at last we see: By

(210) h(Uo) 0 0, h(U1 ) = 1

an element h of H with h(a) # h(b) in defined.

Therefore the proof of lemma 66 is completed.

Continuing now the proof of lomma 65 we denote by ""

the replaooment of a subset by its complementary subset. The goneral

case of any orthogonal correspondence in a lattice or skew

lattice denoted in our former discussions by , , may now be

denoted by Z ; by definition we have

(211) ZZ(k) a x; Z(x + y) a Z(y). Z(x).

Such a Z may exist in our lattice V; we have then,

according to our former considerations, a certaiLn perutation

W in H of the order 2 so that

(212) 9 Z .

This means that 9p (Z(k)) results if one performs
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the permutation t in ( ) and then takes the complementary

set. The permutation 7t obviously is the transformation

(213) h --+ hZ.

Lemna 67: Every distributive lattice with orthogonal oorrompoadense

Z can be reprosented as a sub system of a direct product

of direct factors

(21) u < >v

0

with

(2 5) Z(u) a u, Z(v) a v, Z(o) = 1

With the proof of this lemma 67 obviously also the proof of lemma

65 will be completed.

With respect to 7L the set H consists of realms of

transitivity T containing one or two elements. The lattice

V is isomorphic to the lattice of the w hich is a

sublattice of the lattice P(H) of the subsets of H; and

P(H) is a direct product of direct factors P(T) belonging

to the different T. In the case of a T with one element,

P(T) is equivalent to V2  with Z(o) - 1. If T has

two elements, P(T) is equivalent to (214), (215). - This

completes our proof.

4'

II
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CHAPTER VII, SUPPLEMENTS.

This chapter contains a series of additional oonsiderations,

partly scarcely connected, but contributing to the theory

of skew lattices. Some of theme addition& here seem to show

new promising paths of research, not yet explored suffioiently.

1) Definition. AX-HSL with the property

(216) aAba ba

may be called an atiflat one.

Lema: If a skew lattice W is multiplicatively antiflat.

then it must be flat additively.

Proof: Look at

The dotted arrow is a conmequence of the other arrow$.

2) The free HSL with n generating elements is finite.

This has been shown by T.A. Green and D. Rees, Proc.Caab.Phil.

Soc. 48, 35, 1952.

They proved a theorem containing this lemma as a special

case. Their proof, reduced to the case interesting us, will be

reported in the following.
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Independently W. BUge stated and proved this theorem. His

unpublished proof is not so simple as that of Green and Boe,

but it contains statements which have a nore general meaning

and therefore may be shortly indicated here. They are apt

to give important additions to the theory of skew lattices.

If two special elements a,b fulfil the relation

(217) bab s b,

this in equivalent to the fact that there exist u,v with the

property

(218) uav = b.

Proof: From (218) we get

bay = b and bab a babav = bav u b.

The relation (217) between a and b is a reflexive

and transitive one; writing alb we have

(219) alb, $ blo - .a.

Proof: From bab u b; cbc u c we get

c a uav with u a cb, v a be.

If alb and bla, then we have an equivalence relation

which may be denoted by ajb. The equivalence class to which

an element a belongs may be denoted by a.

I'
1'

[
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Such an equivalence class a is obibusly also a sub
HSL, and we know already from considerations above that

it is the direct product of an halfnest and an aatihalfneat,

But more is to be said:

Loma : The equivalence classes a form also a system of

congruence classes:

(220) aa I, b b' -4 ab-.,a b,.ab',

Proof: From alb or bab - b we have, putting

u a bob, v w be:

uoac. v = bocboaocb. a

= b. ob. a. ebab. c

a b. aba. bc w be. be a be;

therefore acfbe. Correspondingly (in these considerations

strong and weak inclusion play symmetrical relos) we have

ca job.

Our lema 5 is the specialisation of this lema for the flat

case.

Lema : The HSL of these congruence classes a' called
H., is commutative; and each commutative HSL of

congruence classes in the original HSL is a HSL of

congruence classes in K/, .

Proof: We have

(221) xy. yXo xy a xy; yXjxy.

I;
H

p
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At the other hand xylyx, therefore xy,%yx.

And by the congruence xy a yx each halfnest and each

antihalfnest gives only one congruence class.

Before continuing we indicate some considerations showing

what high interest these ideas of Bbges' are meriting.

3) In words we may read aib thus: " b is superweakly

included in a " in the additive case, and a in

superweakly included in b " in the multiplicative case.

Our graphical representation of types of inclusion may be

completed thus:

strong bAau a bVa b

(222) weak avb n b ab a a

superweak aAbAa u a bvavb a b

We have in the general case the consequence-relations

(223)

In the flat case we have additionally

(224)
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so that the whole picture in the flat case is this:

(225)

4) A new construction of HSL's from already given

HSL8 arises in the following manner: Let H be a

HSL fulfilling the axiom (15). Then we make the definition

(226) a.*b = aba.

This make from H a new HSL, which is a flat one:

(a~b)*c = (a*(b)c(a&*b)

(227) w abac aba = abcba,

a *(b*c) m abcba;

a - b -*a aba a a*b.

The ideapotency

(228) ata a aaa a a

(as well as the associative law) is even then fulfilled, if

our starting point is not a HSL, but a more general semi

group with a3 a a , as we studied already above, in (186).

The associative combination a + b defined in (176) has

not the property (15). But in spite of this fact even from the

composition - we get by (226) an HSL. For in this case we have

from (182):

'I
-l
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a a+b + a+ c + a +b + a

(229) . . ... .
' • a + a + a + a + b + c + b =a + a + b + a + b;

a + b +c + b + a o a + a + + c + b.

Returning to the case of an HBL as the starting point of our

construction, we get also

Lema : If in any skew lattice W we replace the cospo.

sition jA by the composition + according to (226), we get

a new skew lattice.

Proof: Replacing A by @ we loose no case of weak inclusion,

and we win no new case of strong inclusion:

(2) ) ab aa.b a;
(20 a*b m b ab a b.

The new classes of examples which can be constructed in this

manner give an extensive new material for the study of the skew

lattices. -

According to Green and Ross, also the semi groups with x3 a x

Jhave the property that the free one generated by a finite number

of elements is finite.

5) The proof that the free HSL with n generating

elements is finite has been given by Bog in the continuation

of his considerations presented above. Instead of following further

ji - his line of discussion we prefer only to give a sketch of the
direct approach to the problem given by Green and Rees.
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The element x ay be given by a product X a ak L Sk ""
hof elements belonging to the generating elements a, a2 ,..., an.

This product may be called a word. Two words certainly correspond
to the same element x if they can be written as AZB and

AZZB:

(231) AZB v AZZB.

If it is not possible to change the word X by a finite number
of steps according to (231) into the word Y , then Y represents
an element * x. With 8(x) = S(X) we denote the set of
generating elements used in any word X representing x;
obviously S(x) is uniquely determined by the element x

the word X say have S a(X). al, a2 ,,.,an.
We writ* with other words X*,AB:

(232) XX w AX* B

8o that

(233) S(A) a s(B) • s(x),

and so that A,B have the possible minimum letha (- number
of factors in the word).

Loma : Then x(AX' B) a x(AB);

Proof: If X + A, then

(234) X = XI af

with af belonging to S(V ; therefore
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(235) X = Yaf Y'af;

and the word XY' is equivalent to (means the same element as)

the word

(236) X1 . Yafy'

which according to (234) is shorter than X itself.

Therefore in (232) the word A is equivalent to a certain

word XZ:

(237) x(A) a x(XZ).

Now we see: The elements equivalent to words AZ B form

a group. Surely they form a semi group; and if X ,Y are

given elements, we can find Z so that

(238) AX B, AZ B, AY* B.

For at first there exists W so that

(239) XWP AY B,

and especially

(240) W a XZY B -AX 4 BZY B.

In the same manner we can solve

(241) AZ*B. AX*B AY* B,

so that in the semi group of elements AY B also division,



right and left, in possible.

Any HSL being a group contains only one element. Therefore

(242) x(AX B) - x(AB).

From these considerations we so* that the number of elements

B(n) in the free HSL with n generating elements

in

(243) kal1

C(m) M 32 (C(. _ 1)1 2; C(1) *1

C(m) a a2 (E _ 1)4 (m2 8.. )m

One gets

(244) BM1 1; B(2) *6; BM) 159; B(4) -332380,

As a consequence of the theorem of Green-Rees-Bage we
have also the following

Lemma :The free doubly distributive skew lattice with

n generating elements is finite.

But the number of its elements, certainly < B(B(n)), must be

enormous already in the cane n -2.
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6) There are possibilities to construct special skew lattices

from matrix skew rings. These possibilities are interesting,

especially because they give us skew lattices with elements which

are functions of continuous parameters. New types of skew lattices

r*e to belound this way.

At first we discuss certain rings of matrices. In suck a ring

the axiom

(245) xyz - xzy

may be fulfilled. The general case of matrix rings with (245)

is not yet known; but there exist examples which are not commutative.

The more tolerant axiom

(246) xy2x + yx2y a x2y
2 + y2x2

is valid in all rings fulfilling (245); and also in rings fulfilling

(247) xyz a yxz

instead of (245).

Other interesting generalisations are defined by the

following axioms:

(248) xyz + yzx + zxy W, xzy + zyx + yxz;

(249) xyzt 0 xzyt.

But these oases (248), (249) will not yet be discussed here further.



- 77 -

In a matrix ring R with (246) we consider the idempotent
.42 2

elements x u x, y y. For these We define:

(250)x xy 0 xy;
(250)

x vY W x + Y- Yx.

Tt set of idempotents in R form a skew lattice according

to (220).

Proof: From (246) we got now:

(251) xyx + yxy = xy + yx;

and therefore xy and xVy again are idempotents:

Multiplying (251) with y we get

(252) xyxy + yxy 0 xy + yxy;

2
Therefore (xy) - xy; and

(253) (xy)2 ,(x + y)2 + (yx)2 - (yx + yxy + xyx + yx)

x + y + xy - (yxy + xyx) - x + y -yx

Associativity of the composition V is shown by

(254) XvYvS a x + y + z -.yx - zx Sy + Syx.

And we have
x(yvx) a x(y + x - xy) ax;

(255)
xyV X •xy + x -Y xy
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Therefore this indeed is a skew lattice; obviously the direct

proof of idempotency was not necessary.

Our now skew lattice is modular.

Proof: Twofold weak inclusion of x in y means:

(256) xy - x; xy x + y yx y

or

(257) xy yx M x.

This has indeed the consequence

(258) (xz)y - xzy,

or

(259) (x + z -zx)y = x + zy -zyx.

This skew lattice fulfils the tolerant distributive law:

c lavebi - C [a + cb - obal a a lav bj;

(260) (b c)avc a (bvc)a + c - c(bvc)a

= (b + c - cb)a + c(b + c - ob)a

= ba + c - cba a bare.

In the more special case (245) this skew lattice fulfils
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(261) xyx = xVy.

It is therefore an example of the antiflat lattices discussed

above, according to (216).

Proof: From (254) we have

(262) xVy x M x + y - yx - xy + xyx,

and with (245) this gives

(263) xVyVx • X + y - yx Vxye

In this case (245) also another construction is possible:

X A y W xyl

(264) x Y a xy .
V

We then have

(265) x(yvx) u x(y + x - yx) x zy + x- xyx ax;

XYVX a xy + x - XYX = X0

This other skew lattice too is modular.

Proof: In this case x is exactly then twofold weakly
included in y, if xy = x. We have then (XvS)y a xsy

4 from

(266) (x + z- x)y x + Sy -zy.
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Again the tolerant distributive law i. valid:

c[avcb] - ca +, cb - cacb - a [a + b - ab];

(267) (b c)ac - (bvc)a + c - (bvo)ac

- (b + c - bc)a + a - (b + c - bc)ao

ba + c - bac a barC.

This skew lattice is a flat one - other than that defined

by (250), (245): For we get from (262) - a relation obviously

still valid - now the consequence

(268) xvyx M yvx.

At last let us assume the existence of an element with

the property

(269) u U

for all elements (not ouly the idempotents) of R. In this

case we can make a curious application of the f,F -construction:

(270) fx M Fx W Ex.

Here Fx and fx are the same function of x.

Indeed we have

ffx u fx = FFx a Fx = x;

(271) ) F(xly) 0 FxAFy =Exy;

f(xVy) a fxvfy a jx + EY -Exy;

fxrx X; x Fx x,

tV
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The new skew lattice, resulting from the f,F -construotion,

has

(272) { AY a

x y a y +2Ix - r:y.

Appendix

I x2 72
if -2 x and y 2 yo then from (248) it follows

that also 2 x .

Proof: From (248) we have for z a xy:

(273) 2xyxy + yxyx - xy + yxy + xyx;

from there:

2xyxy + yxyxy u xy + yxy + xyxy

or

(274) xyxy + yxyxy *xy + yxy.

Therefore by permutation of x and y and subtraction:

(275) xyxy - yxyx * xy - yx

Adding (274) and (275) we get:

(276) xyxy M xy.

Inserting (276) in (273) we get:

(277) xY + YX YxY + xYX.
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Therefore: Also x + y - xy becomes idempotent, in consequence

Ad of (248), if x2  XI Y 2 mye

Another consequence of (248): Replacing x by xyx we

get:

(278). yzyxy - yxyzy.

7) Another example of skew lattices: The right ideals of a

semi simple skew ring with minimal chain condition form a skew

lattice with respect to addition and multiplication.

8) Taking any constant element a we dedine a product

of x and y as xay. This gives a semi group with the

property x3 . x2 .

9) We study a system of 4 elements U, v, x, y with the

composition table

u v x y

(279)

meaning for instance that uv = u.

The following permutation A of the elements obviously

is an automorphism:
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A u V xy)

(280) v u y x);

therefore in order to pbove that (279) is associativel it suffiees

to prove the case a(bc) w (ab)o with a a u: Indeed

n(bo) a (ub)c is to be verified at once for the oases

b w u, v, x, y, Therefore (279) defines an HSL.

Now we use (279) as definition of aAb, and we construct

ab in the follbwixnkg manner. The permutation

y v u
(281)

has the property

p2. A2
(282) P2* A.

We define

(283) a vb a P (P bP ai

s6 that we have

(284) P(aAb) a Pb Pa.

The definition (283) makes from the HSL (279) a skew

lattice.

Proofs The composition (283) is associative:

(p.1-1b)
(285) (b)v c P(P-l 1 -,A (a,))

a P(P' 1oP'1 b4 P' a)

• a a(byo).
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And (2) becomes equivalent to

(26 Pa4 P(a,,b) = Pa,(286) .

p a AP (aAb) - a.

In consequence of (282) these two relations are equivalent;

and we see that in our example the first line of (286) indeed

is fulfilled.

We have here a generalisation of the concept of orthogonality

as discussed above. Orthogonality is the special case with

A n identical permutation.

The table for the additive composition in the case of our

example here obviously is:

u v x y

(287) uu v u v

v U v u v

x U v x Y

y u G x y

Fotodruck: Mikrokopie G.m.b.H. Munchen 2, Weinstr. 4


